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Motivation

Many real-world applications utilize supervised pre-training

A person riding a Two dogs play in the grass.
motorcycle on a dirt road.

A group of young people
g a game of frisbee,

Two key players are
fighting over the puck.

&

Object detection [1] Semantic segmentation [2] Image captioning [3]

[1] Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection” (2015)
[2] Zhao et al., “Pyramid Scene Parsing Network” (2016)
[3] Vinyals et al., “Show and Tell: A Neural Image Caption Generator” (2014)
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Motivation

Supervised learning from paired multi-modal data successful
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Knowledge transfer from RGB to Action recognition jointly using RGB and
depth modality [1] optical flow [2]

[1] Gupta et al., “Cross-Modal Distillation for Supervision Transfer” (2015)

[2] Simonyan et al., “Two-Stream Convolutional Networks for Action Recognition in Videos” (2014)
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Motivation

Large scale unannotated
Image and video data free fl =
ickr

2 YouTube
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Motivation

Large scale unannotated
Image and video data free

Supervised learning relies amaZon

on annotated data
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Motivation

Large scale unannotated Siberian Husky™ _Eskimo Dog™

Image and video data free

Supervised learning relies
on annotated data .
Annotations costly and MG e
prone to errors Samples from the ImageNet dataset [1]

[1] Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge” (2014)
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Motivation

Large scale unannotated Increase in computational power
Image and video data free 40 eas ot Merprssar T Ot P
Supervised learning relies

on annotated data

Annotations costly and e
prone to errors

1980 1880 2000 2010 2020

Supervised learning does
not scale well into future
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Motivation

Self-supervised representation learning

Solving task

" with trainable CNN

Solving Jigsaw Puzzles [1]

[1] Noroozi et al., “Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles” (2016)
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Approach

y
>

Self-supervised learning from
paired multi-modal data

Flow Modalit

Cross-modal information has
high semantic meaning (barbell,
bat)

Modalitly specific content has o+
low semantic meaning ke ¥
(background, camera motion)

Pair A Pair B Scene
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Approach

Y
- g
Desirable features: E
* Invariant to modality specific x|
content L
Similar features in a pair

e Sensitive to cross-modal
information

o0
T
Distant features between pairs « | g2

Achieved using Lcross and Ldiv

Pair A Pair B Scene
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Model Pipeline '
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Model Pipeline
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Model Pipeline

— g
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Model Pipeline

. g

> f(x;)

Cosine Distance: d..s(a,b) =1

B a-b
al - [b]
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Model Pipeline

/ Lross: Minimize deos (-, *)

* > f(x;)

L giv: Maximize deos (-, *)
> f(%;5)

Cosine Distance: d.ps(a,b) =1

B a-b
al - [b|

S
Feature representation
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High-Level Input Activations

Guided backpropagation [2]
of 100 strongest
activations in pool5
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HigP-LveI Ineut Activations

Guided backpropagation [2]
of 100 strongest
activations in pool5

i | ‘
Input Ours ImageNet OPN [1]

[1] Lee et al., “Unsupervised Representation Learning by Sorting Sequences” (2017)

[2] Springenberg et al., “Striving for Simplicity: The All Convolutional Net” (2014)
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High-Level Input Activations

Guided backpropagation [2]
of 100 strongest
{ activations in pool5

Input Ours ImageNet OPN [1]

[1] Lee et al., “Unsupervised Representation Learning by Sorting Sequences” (2017)
[2] Springenberg et al., “Striving for Simplicity: The All Convolutional Net” (2014)
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Action Recognition

Pre-training data Traintime UCF-101 HMDB-51

Random None None 48.2 19.5
ImageNet [5] ImageNet 3 days 67.7 28.0
Shuffle and Learn [1] UCF-101 - 50.2 18.1
VGAN [2] (C3D) flickr (2M videos) > 2 days 52.1 -

LT-Motion[3] (RNN) NTU (57K videos) - 53.0 -

Pose f. Action [4] (VGG) UCFHMDB,ACT - 55.0 23.6
OPN [5] UCF-101 40 hours 56.3 22.1
Our UCF-101 6 hours 58.7 27.2
Random (VGG16)+ None None 59.6 24.3
Our (VGG16)+ UCF-101 1.5 days 70.5 33.0

[1] Misra et al., “Shuffle and Learn Unsupervised Learning using Temporal Order Verification” (2016)

[2] Vondrick et al., “Generating Videos with Scene Dynamics” (2016)

[3] Luo et al., “Unsupervised Learning of Long-Term Motion Dynamics for Videos” (2017)

[4] Purushwalkam et al., “Pose from Action: Unsupervised Learningof Pose Features based on Motion” (2016)

[5] Lee et al., “Unsupervised Representation Learning by Sorting Sequences” (2017)
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Transfer Learning

Pascal VOC 2007 object classification and detecion

Pre-training data Traintime Classification Detection

ImageNet [5] ImageNet 3 days 78.2 56.8
Context [1] ImageNet 4 weeks 55.3 46.6
Counting [2] ImageNet - 67.7 51.4
Jigsaw [3] ImageNet 2.5 days 67.6 53.2
Jigsaw++ [4] ImageNet - 72.5 56.5
Shuffle and Learn UCF-101 - 54.3 39.9
OPN [5] UCF,HMDB,ACT _> 2 days 63.8 16.9
Our UCF,HMDB,ACT | 12 hours 70.7 48.1

[1] Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction” (2015)

[2] Noroozi et al., “Representation Learning by Learning to Count” (2017)

[3] Noroozi et al., “Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles” (2016)
[4] Noroozi et al., “Boosting Self-Supervised Learning via Knowledge Transfer” (2018)

[5] Lee et al., “Unsupervised Representation Learning by Sorting Sequences” (2017)
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Different Modalities

Frame differences as cheap
alternative to optical flow

Benefit for all modalities

Action Recognition
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Pair A Pair B Scene

Dataset Pre-training RGB & Flow || RGB & Frame diff.
UCF-101 | No pre-training 49.1 || 76.4 49.1 64.5
UCF-101 | Our pre-training | | 59.3 |1 79.2 | | 55.4 66.3
HMDB-51 | No pre-training 19.2 47.1 19.2 30.8
HMDB-51 | Our pre-training | | 27.7 | | 51.7 23.5 33.3

Cross and Learn
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a-b

Cosine Distance: d,pq(a,b) = 1 — ——
osine Distance: dcos(a, b) lal - b]

Our model
https://hci.iwr.uni-heidelberg.de/compvis
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